Monitoring the origin of the TRF with Space Geodetic Techniques

Erricos C. Pavlis
JCET and NASA Goddard Space Flight Center
Univ. of Maryland Baltimore County
Baltimore, Maryland (epavlis@JCET.umbc.edu)

13th International Laser Ranging Workshop October 07 through 11, 2002, Washington, D.C.

Outline

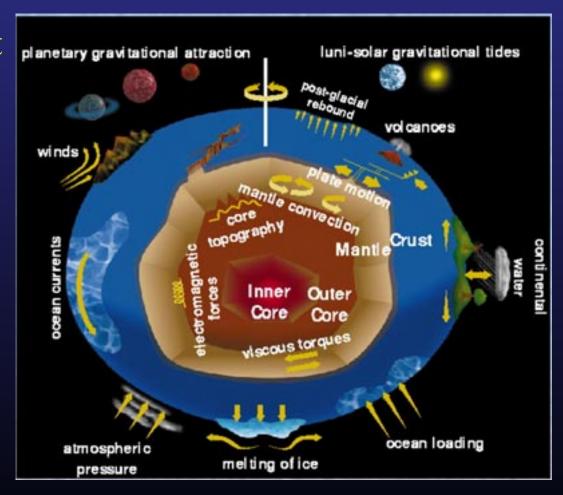
- Introduction
- Review
- Results from Space Techniques
- Conclusions

Introduction

- Definition
- Practical Realization
- Sensitivity to sources of variability
- Observability from Space Techniques
- Current state (resolution & precision)

Geocenter Definition

• From Mechanics, at a certain epoch *t*:


$$x_c = (1/M) \iiint x'dM$$

$$y_c = (1/M) \iiint y' dM$$

$$z_c = (1/M) \iiint z'dM$$

Temporal Variability

- Mass is in constant motion in the Earth system:
 - Solid Earth
 - Atmosphere
 - Hydrosphere
 - Oceans
 - Ice caps
 - Soil moisture
 - Rivers & lakes

Observations & Models

- Remote sensing techniques from space are now steadily providing with ever increasing resolution and accuracy estimates of the various Earth system components (snapshots)
- We are still far from having a complete and satisfactory picture for all of the components
- Models are still very useful in providing us with estimates of the less reliably observed or the yet-to-be-observed components

Practical Realization

- Terrestrial satellites are sensitive to the instantaneous location of the geocenter with respect to the tracking network polyhedron
- Frequent redefinition of the tracking site positions (e.g. monthly, weekly, or even daily averages) provide a time-series of realizations (Helmert/geometric)
- Alternatively, the averaged geocenter offsets can be estimated directly from the variation in the first degree terms of the gravitational model (dynamic)

Periodic Variability of the Geocenter

- Observations and models of the geophysical processes typically provide us with daily to monthly averages at this time
- With new missions in the planning stages, this can be soon improved

JOHNSON ET AL.: OCEANIC CONTRIBUTIONS TO GRAVITATIONAL FIELD

Table 3. Geocenter Motion Seasonal Sinusoids Computed From the Combined Analysis of LAGEOS I and II Satellites, Atmosphere, Ocean, and Continental Water Storage^a

		Annual		Semi-Annual		
Source	Axis	Amplitude, mm	Phase, deg	Amplitude, mm	Phase, deg	
Atmosphere (IB)	x	0.55	104	0.23	90	
ECMWF	y	1.31	91	0.38	217	
Dong et al. [1997]	z	0.87	133	0.73	271	
Atmosphere (IB)	x	0.40	165	0.30	270	
GEOS-1	y	1.35	150	0.47	335	
This paper	z	0.44	134	0.70	353	
Oceans (ISO Model) Dong et al. [1997]	x	1.05	79	0.39	248	
	y	0.09	121	0.29	282	
	z	0.18	218	0.16	41	
Oceans (T/P Model) Chen et al. [1998]	x	0.96	73	0.86	187	
	y	0.97	52	0.73	173	
	z	0.49	3	0.25	232	
Oceans (POCM_4B) No correction	x	0.89	92	0.24	117	
	y	0.40	130	0.23	22	
	z	0.05	193	0.13	189	
Oceans (POCM_4B) Sea level adjustment	x	0.83	95	0.24	111	
	y	0.40	136	0.24	23	
	z	0.14	220	0.09	182	
Continental Hydrology Dong et al. [1997]	x y z	3.28 2.94 3.57	25 185 40	0.84 0.94 0.60	319 48 344	
Continental Hydrology	x	1.28	44	0.15	331	
(CDAS-I)	y	0.52	182	0.56	312	
Chen et al. [1999]	z	3.30	43	0.50	75	

Long Period Signals

Source	Magnitude	Induced motion	Ref.
Sea level	1.2 mm/y	$0.064 \pm 0.02 \text{ mm/y}$	2
Ice sheets (G)	2 mm/y	0.046±0.20 mm/y	2
Tectonics	AMO-2	0.309±0.05 mm/y	2
Postglacial	ICE-3G	0.2 - 0.5 mm/y	1
rebound	model		

- (1): Marianne Greff-Lefftz (2000)
- (2): Yu. Barkin (1997?)

Observations - SLR (CSR 12-day)

- 12-day averages since late 1992 and up to early 1997
- The 12-day averaging period results in increased noise in the series
- Long period trends compare well with geophysical predictions and other SLR series

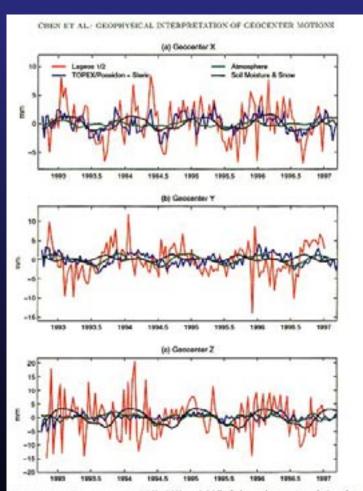
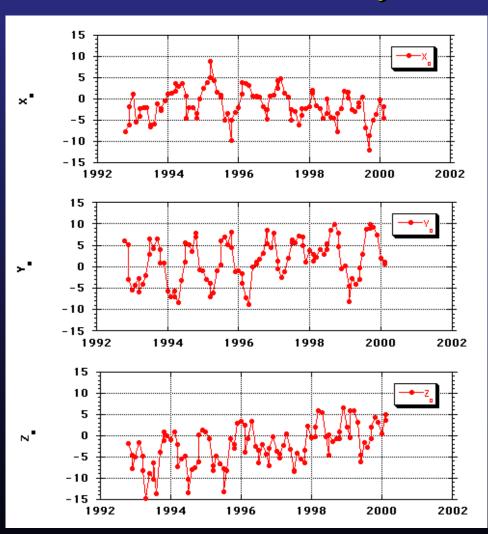
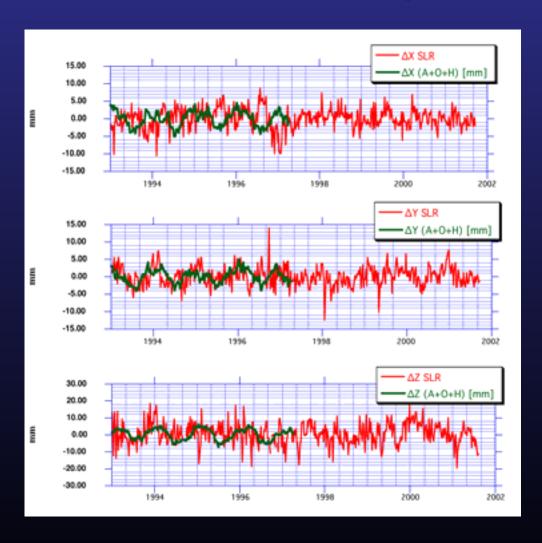
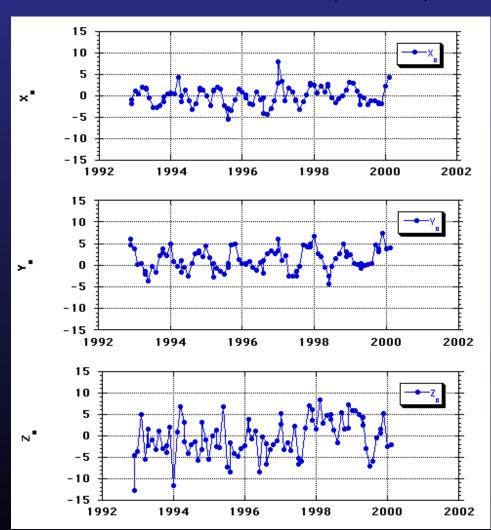



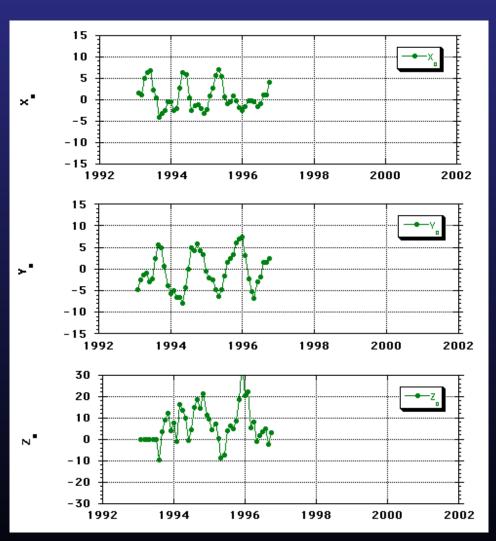
Plate 1. The three components (a)X, (b)Y, and (c)X of observed generator solutions from Lagons 1 and Lagons 2, along with the atmospheric, continental hydrological, and occanic contributions.


Observations - SLR (CSR monthly)

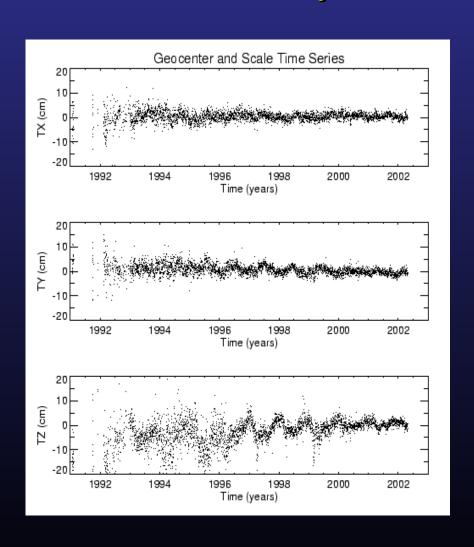
- Monthly estimates since late 1992 (evolving, ?)
- The monthly averaging period results in a clearer definition of the annual and semi-annual signals
- Order of magnitude of observed variations compares well with geophysical predictions and other SLR series


Observations - SLR (JCET weekly)

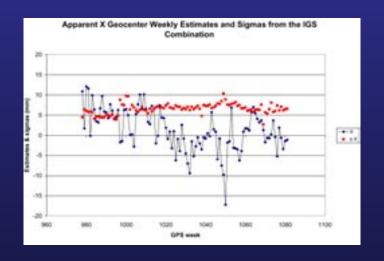
- Weekly estimates since 1993, secular trends removed
- Tracking network variations affect quality of results
- Order of magnitude of results consistent with predictions and other SLR series

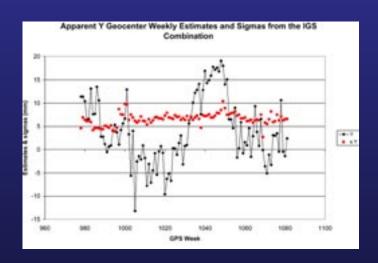

Observations - SLR+DORIS (CSR)

- Monthly estimates since late 1992
- The addition of a second type of data from another satellite (T/P) changes the amplitude of the annual and semi-annual signals as well as the secular trends
- In general, the observed variations are reduced in comparison with the CSR SLR-only series

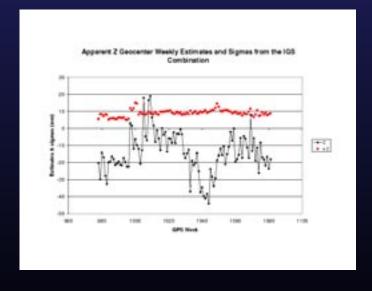

Observations - DORIS (CNES)

- Monthly series for 1993 1996
- With only four years of results we can infer only tentative conclusions
- The amplitude of the annual and semi-annual signals seem more similar to the LAGEOS-only results than to the CSR SLR+DORIS series
- Z-component less reliable




Observations - GPS (JPL Daily)

- Long record of daily estimates: 1992-2002
- Variable quality over the years
- Order of magnitude larger variation compared to predictions and other techniques



Observations - GPS (IGS Weekly)

- GPS Weeks 980 1080
- Short and noisy series
- Order of magnitude of variations larger than predictions and weekly SLR results

Observations vs. Predictions

JOHNSON ET AL.: OCEANIC CONTRIBUTIONS TO GRAVITATIONAL FIELD

Table 3. Geocenter Motion Seasonal Sinusoids Computed From the Combined Analysis of LAGEOS I and II Satellites, Atmosphere, Ocean, and Continental Water Storage^a

Source	Axis	Annual		Semi-Annual	
		Amplitude, mm	Phase, deg	Amplitude, mm	Phase, deg
LAGEOS I/II Solution Eanes et al. [1997]	х	2.18	31	1.08	164
	у	3.20	151	0.77	213
	z	2.79	45	0.38	13
Sum Oceans (POCM_4B-	х	1.88	76	0.16	287
SLA)+Atm (GEOS-1)+	у	2.19	158	1.15	333
Hydro. [Chen et al., 1999]		3.18	51	0.83	28
Sum Oceans (POCM_4B-	х	3.42	43	0.83	312
SLA)+Atm (GEOS-1)+	У	4.44	171	1.41	25
Hydro. [Dong et al., 1997]	z	3.43	47	1.21	348
Sum Oceans (POCM_4B-	x	2.36	72	0.38	83
SLA)+Atm (ECMWF)+	У	1.78	118	0.62	298
Hydro. [Chen et al., 1999]) z	3.28	59	0.26	282
Sum Oceans (POCM_4B-	х	3.90	45	0.56	350
SLA)+Atm (ECMWF)+	У	3.50	158	0.79	46
Hydro. [Dong et al., 1997]	•	3.49	54	1.03	299

^a The amplitudes are in units of millimeters and the phases are in units of degrees from January 1 using a sine convention.

Atmosphere (IB)	x	0.55	104	0.23	90	
ECMWF	у	1.31	91	0.38	217	
Dong et al. [1997]	Z	0.87	133	0.73	271	
Atmosphere (IB)	x	0.40	165	0.30	270	
GEOS-1	у	1.35	150	0.47	335	
This paper	z	0.44	134	0.70	353	
Oceans (ISO Model)	х	1.05	79	0.39	248	
Dong et al. [1997]	y	0.09	121	0.29	282	
-	z	0.18	218	0.16	41	
Oceans (T/P Model)	x	0.96	73	0.86	187	
Chen et al. [1998]	у	0.97	52	0.73	173	
	z	0.49	3	0.25	232	
Oceans (POCM_4B)	x	0.89	92	0.24	117	
No correction	у	0.40	130	0.23	22	
	z	0.05	193	0.13	189	
Oceans (POCM_4B)	x	0.83	95	0.24	111	
Sea level adjustment	у	0.40	136	0.24	23	
·	z	0.14	220	0.09	182	
Continental Hydrology	х	3.28	25	0.84	319	
Dong et al. [1997]	у	2.94	185	0.94	48	
	ž	3.57	40	0.60	344	
Continental Hydrology	x	1.28	44	0.15	331	
(CDAS-I)	у	0.52	182	0.56	312	
Chen et al. [1999]	ž	3.30	43	0.50	75	

Summary and Conclusions

- Periodic and secular variations of the geocenter observed by all of the satellite positioning techniques (SLR, DORIS, GPS)
- The tracking data quality, the tracking site distribution and the averaging period affect the resulting estimates at levels higher than their formal error statistics (2-3 mm)
- Annual and semi-annual signals in the observed series correlate well with geophysical predictions, except for the case of continental hydrology (most difficult to model)
- Improvement of the gravitational model from Gravity Mapping missions (CHAMP, GRACE and GOCE) will remove the mismodeling now lumped into these estimates
- Adding more satellite targets (e.g. ETALONs) can enhance the quality of the results, if some error sources associated with satellite signature can be controlled